
RD-RI57 311 DIRECTLY EXECUTED
LRNGURGES(U) STNFORD

UNI CR 1/1

JL7 COMPUTER SYSTEMS LAO M J FLYNN 10 MAY 85

ARO-i8553.i-EL DARR2-82-K-8899
UNCLSSIFIED6 F/G 9/2 NL

L..
.1a

MICROCOPY RESOLUTION TEST CHART

- F NA BUEA OF STNAD-1963-A

L ~~

ITNCT.ARSTT f
-PE'URITY CLASSIFICATION OF THIS PAGE Cheu, Doe Eatereod)

REPORT DOCUMENTATION PAGE BRED INSTOUCTONSBEFORE COMPLETING FORM

REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

,410 /7 3.i4 N/A N/A
TITLE (And Subahli.) S. TYPE OF REPORT & PERIOD COVERED

"Directly Executed Languages" Final Report
19 Apr 82 - 30 Jun 85

6. PERFORMING ORG. REPORT NUMBER

AUTHORg-) S. CONTRACT OR GRANT NUMBER(8)
Prof. M. Flynn DAAG29-82-K-0109

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
Computer Systems Lab AREA & WORK UNIT NUMBERS

Stanford University
Stanford, CA 94305-2192

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office 10 May 85

Post Office Box 12211 13. NUMBER OF PAGES
Rereg~r- Tr'4anp1 P~i, "09 12

14. MONITORING AGENCY IE & AhORESS(f- l.eet from Controlling Office) 1S. SECURITY CLASS. (of this report)

Unclassified

15. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited. ELJ .

17. DISTRIBUTION STATEMENT (of the ab tract mtered In Block 20, i different from Report) C

NA A

IS. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy, or decision, unless so
dV1gnarmtr! h nte irzntatinn-

19. KEY WO'ROS (Cotnue on reere ide If neceeeay end Identity by block number)

* Computer architecture, instruction sets, instruction bandwidth, concurrent
execution, directly executed language, direct correspondence architecture.

*2 ASTRACT' (Cuntae = reveree so N uiee..emy mod Identity by block nsmbe)

Computer architectures can be designed to be in close correspondence with high
level computer languages. Techniques for designing this correspondence have
been developed which produce instruction sets called Direct Correspondence
Architectures. DCA representations mimimize the number of bits needed to encode
an instruction, as well as many of the dynamic parameters associated with program
execution. j

FOin
DO . MI O73 TIoW OF I NOV s soLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dale Xntered)

,-, 85 72 0 5.

DIRECTLY EXECUTED LANGUAGES

Final Report

Prepared for

Department of the Army
U.S. Army Research Office

P. 0. Box 12211
Research Triangle Park, NC 27709

Contract No. DAAG29-82-K-0109

April 19, 1982-April 18, 1985

by
Dih..libuticn/

Michael J. Flynn - i . Codes
Computer Systems Laboratory A d.'o,

Department of Electrical Engineering
Stanford University

Stanford, CA 94305-2192

. Approved for public release; distribution unlimited.

The views and/or findings contained in this report are those of the authors and should
not be construed as an official Department of the Army position, policy, or decision,
unless so designated by other official documentation.

i

rp

. V - *.... *..-. -.-. . .:..-.. y.i . .:.; . . -. ; .d -d .. .-.... i ,." - .--t.

Table of Contents

1 Direct Correspondence Architecture 2
1.1 An Evaluation of Adept-A Pascal Based Architecture 2
1.2 A Microprocessor Implementation of a DCA 2
1.3 The Instruction Bandwidth of Direct Correspondence Architectures 3
1.4 Memory Hierarchies for Directly Executed Language Microprocessors 3

2 Architectural Analysis 4
3 Concurrent Execution 5
4 Participating Scientific Personnel 8
5 Technical Reports and Publications Sponsored Under Contract 9

Figure 1: Pipelined Execution 5
Figure 2: The Ultimate Pipeline 6
Figure 3: Ratios for Different Levels of Concurrency 7

Abstract

Computer architectures or instruction sets can be designed to be in close correspondence
with high level computer languages. Techniques for designing this correspondence have
been developed which produce instruction sets called Direct Correspondence
Architectures, or DCAs. DCA representations minimize the number of bits needed to
encode an instruction, as well as minimizing many of the dynamic parameters associated
with program execution. In a Pascal-based DCA, the following reductions were achieved
for a broad range of benchmarks when compared to a breadbasket of conventional
architectures such as S/370, VAX, and P-code:

1 *instruction bandwidth reduction: 3.46

I data read reduction (in bytes): 5.42

"-data write reduction (in bytes): 14.72

A microprocessor based implementation of a Pascal-based DCA has begun. Issues in
concurrency detection for these and other architectures have been investigated.

(Keywordsh --- - -

Computer architecture, instruction sets, instruction bandwidth, conncurrent execution,
direct correspondence architecture, directly executed languages.

.hS.. , .. t.W... S.. -4 S L I._ . . k .* _ .. * , ., -' , * t

1 Direct Correspondence Architecture

A natural way to make compilation as straightforward as possible is to make the
instruction set or architecture fit the high-level language. This work centers on a family
of architectures called direct correspondence architectures, or DCAs. High-level
language statements are closely represented by DCA instructions. DCA representations
minimize the number of bits needed in the instruction stream for operand specification,
without resorting to encodings that require knowledge of the frequency of occurrence of
individual operands. A Pascal-to-DCA compiler and a DCA processor emulator have
been used to measure the number of instructions required to run test programs to
completion. These results show that it is possible to make an architecture suitable for a
high-level language in a way that results in architectural measures that indicate a higher
speed of execution and a lower cost of implementation than some familiar architectures.

1.1 An Evaluation of Adept-A Pascal Based Architecture

This study developed and extended techniques to provide architectural correspondence
between high level language objects and hardware resources so as to minimize the
execution time parameters (memory traffic, program size, etc.). A resulting Pascal-based
architecture (or instruction set) called Adept has been emulated, and a compiler
developed for it. This allows a statistical basis for understanding the dynamic behavior
of Pascal-type programs. While the study is restricted to Pascal, the resulting data is
generally applicable to many familiar high level language execution environments. Data
indicate that significant bandwidth reductions are possible compared to S/370, VAX, P-
code, etc; specifically:

" instruction bandwidth reduction: 3.46

" data read reduction (in bytes): 5.42

" data write reduction (in bytes): 14.72

While Adept uses a bit-variable encoding of objects, most of the above reductions are
retained using block encoding of, e.g., 6/12/... bits per object. The tradeoff between
format sets and object encoding was developed.

The contour model for variable accessing (used in Adept) provides a useful technique for
understanding and minimizing data traffic. Buffers between 64 and 256 words capture
most environments, depending on how assignment of objects is made.

1.2 A Microprocessor Implementation of a DCA

A simple model implementing a direct correspondence architecture was simulated for a
set of benchmarks. The performance was measured to guide architecture design
decisions and to make a comparison with existing microprocessors. Replacing high level

2

, ., ,.,. ., .,.,_, ,J, . . . ',,,J', ., " '. ,. - .- ,-, ' ,"."-..•,. ,. . - .,. .. ,;. .

instructions with multiple lower level instructions caused a decrease in performance of
less than 10%. This result caused the removal of instructions such as array reference,
for loop, and end for loop instructions from the architecture. Several other statistics on
instruction format frequencies and use of data types were generated. The measured
performance was compared with existing microprocessors like MIPS and the M68000.
Comparison is difficult, however, because of different memory and compiler/optimizer
assumptions.

Memory reference caching and buffering models were evaluated for their applicability in
VLSI design. By gathering data from a set of benchmarks, conclusions are being drawn
for the size of on-chip data memory. Data for several on-chip data memory models are
being compared together with the area occupied on the chip. The results will give
insight into the usability of models which are not yet considered practical and will lead
to improved combinations of different models. The partial results available show that a
modified contour buffer model needs only 64 words of on-chip memory to decrease data
memory bandwidth significantly. Further results will be available in the middle of 1985.

1.3 The Instruction Bandwidth of Direct Correspondence Architectures

This research involves simulation of entire families of processor architectures and
simulation of cache performance for various kinds of caches. Work completed to date
includes construction of a simulation workbench and initial measurement of stack and
register oriented families. In preliminary work the effects of different aspects of DCAs
on instruction bandwidth were measured by simulating 160 variants of the Adept
architecture.

DCAs exhibit very low instruction bandwidths when compared to other classes of
architectures. The contributions of various factors to this low instruction bandwidth
were evaluated. The simulations were performed by modifying an Adept interpreter to
estimate the instruction word fetch counts for each variation. The results indicated that
the methods used by DCAs for very dense encoding of explicit operands allow DCA
instructions to carry more information than instructions in other architectures without
increasing the average instruction size. This accounts for most of the savings in
instruction bandwidth. The methods used by DCAs to reduce the number of explicit
operands (i.e. extended format sets) greatly lower instruction bandwidth requirements
only when used with less dense operand encoding techniques.

1.4 Memory Hierarchies for Directly Executed Language Microprocessors

Trends in semiconductor processing technology indicate that DCA architectures are more
appropriate than traditional architectures for single-chip microprocessor designs. More
specifically, DCA architectures better exploit both the large amounts of memory
integrated in microprocessors and the limited bandwidth available for microprocessors to
access external memory. This research reports the results of studies concerning data

3

storage requirements for DCAs and cache performance tradeoffs, thus contributing to
memory hierarchy design for both DCA and other microprocessors.

The static and dynamic data storage requirements for DCA processors were examined by
analyzing a set of Pascal test programs and traciuL data references during execution.
The operation of a buffer with a simpler structure than cache memories was specified
and simulated. The results of these simulations show that a 256-word buffer typically
faults on fewer than 5% of the storage allocations associated with entering procedures
and captures 80% of a DCA processor's data references. Results concerning both the
frequencies of different types of data references and the simulations of various buffer
strategies are also reported, providing information previously unavailable to guide design
tradeoffs for such microprocessors. Basically, the same 5% fault rate could be achieved
with a 128 word buffer if constants were encoded in the intruction stream. Further, the
5% rate could be maintained for a 64 word buffer if, in addition, global variables were
separately identified and stored.

The research also describes a model for circuit area tradeoffs in microprock. ,r cache
designs, which differs from previous analyses in considering the overhead cost of storing
address tags and replacement information along with data. Using the model, larger
block sizes were found leading to better cache designs than predicted by previous studies.
Wien the overhead cost is high, caches that fetch only partial blocks on a miss perform
better than similar caches that fetch entire blocks. These results indicate that lessons for
mainframe and minicomputer design practice should be critically examined for
microprocessor designs.

2 Architectural Analysis

Computer architectures were compared by measuring the execution of an identical set of
high level language programs. Comparative studies are difficult and expensive as they
require an environment in which all the architectures can be analyzed on a common
basis. Simulation has been used, but the slow speed makes it prohibitively long to collect
a significant sample. Performance measures, such as the number of instructions, reflect
not only architectural differences but factors (such as compilers) not related to the
architecture.

The instruction streams of the IBM S/370, DEC PDP-11, and P-code machines were
measured using a microprogrammable processor ("Emmy"). The measurement
mechanism is embedded into the interpreter (an emulator) for the machine, and has
access to all aspects of the instruction execution. The DEC VAX instruction stream was
measured on a VAX 11/780 using a trace feature in the architecture. A set of
FORTRAN programs was used for measurements, and reflects a scientific work load.

The analysis first studied the composition of the instruction stream. The total number
of instructions executed shows the VAX architecture to be most efficient, but measures

4

of the activity necessary by the interpreter indicate that the S/370 representation is
fastest to interpret. Memory reference behavior indicated that the 8-bit displacement
used by the VAX is very effective for local referencing, but VAX suffers in referencing
global objects.

This work analyzed the interaction between compiler optimization techniques and the
instruction streams that result from optimization. Six S/370 compilers generated
different representations of the test work load, and produced the data base for study of
high level language behavior and architectural analysis. Optimization, while reducing
the resource demands of a program, does not apply uniformly to all aspects of instruction
execution. The fixed-point computation and memory reference demands are greatly
reduced, but the control requirements of a program are largely unaffected. Because the
absolute occurrence of control-related instructions is constant, their relative frequency
increases with optimization.

3 Concurrent Execution

The execution time of instruction can be effectively reduced by overlapping the start of
the execution of one instruction with the end of the execution of another. This process
of overlapping instruction execution is called pipelining and it is used on all "super
computers". An example of an instruction stream which has been pipelined is shown in
Figure 1.

I IF I DC ^A I OA IGE 1

I IF DCl l G O IAGiX I

I C I AC l oF I EX !

l IF DC I oF I OF X I
Figure 31: Pipelined Execution

Extending the concept of pipelining to its ultimate limit would generate an execution
sequence where all instructions execute at the same time. But since simultaneous
execution of all instructions would mean that inputs are fetched at the same time and
results are produced at the same time, simultaneous execution could be performed
correctly only if no instruction in the task required the completion of any other
instruction to perform its function. Since this is possible only in the most trivial of cases,
the correct execution of all other programs can occur only when instructions wait for
other instructions to execute, producing results which are needed for their correct
execution. An example of such an ultimate pipeline is illustrated in Figure 2. Executing

5

multiple instructions at a time will be called concurrent execution of instructions as
opposed to parallel execution which usually refers to a single instruction stream, multiple
data stream style of computation.

I ,F I Dct AG IOF I[EXI
IF I DC AG o. I Fix

IF I DCIAGI0- I FXI

IIFI DC AG O IIEX

Figure 3-2: The Ultimate Pipeline

There are different degrees to which concurrent execution of instruction streams can
take place. Using a minimal amount of hardware, a small amount of concurrency can be
detected providing a modest increase in execution speed. The amount of concurrency
detected in these schemes can be compared to the serial speedup of traditional machines
which have instruction prefetch but little or no pipelining. Introducing more hardware
increases the amount of concurrency which can be detected and subsequently the
execution speed of the task. Concurrency such as this can be compared to a highly
pipelined machine which allows out of order execution, multiple path exploration, and
interleaved memory traffic.

Although the degrees of concurrency detection can actually be thought of as a
continuum, four distinct levels have been defined in our research. These levels are
defined so that increasing level numbers increase the amount of concurrency detected,
with a corresponding increase in the amount of difficulty of detection and subsequently
the amount of hardware needed for implementation. They include:

Level O-Pipelined Execution

The main feature of Level 0 concurrency detection is that there is no concurrency
actually detected at all. Level 0 concurrency is characterized by the fastest program
execution possible with the single restriction that an average maximum of one instruction
is executed in each machine cycle.

Level 1-Transparent Concurrency

Level I concurrency is characterized by a direct examination and exploitation of the
concurrency which existed in the original task. In this level of concurrency, only the
concurrency which was explicitly apparent in the task is detected.

8

Level 2-Machine Detectable Concurrency

Level 2 concurrency is marked by taking advantage of all the concurrency which a
machine can detect without resorting to algorithm recoding or code manipulation.

Level 3-Algorithm Detectable Concurrency

Level 3 concurrency is characterized by analyzing the job to be done and restructuring it
in hardware and software to produce a representation which will execute in a minimal
amount of time using the minimum number of steps. More precisely, level 3 concurrency
is all concurrency which can be detected algorithmically. This detection process can
occur at both the hardware and software level.

We have completed a fairly extensive study of the speedup potential at each of the above

levels. One such study1 found the concurrency available in a sample DCA program,
shown in Figure 3. Note: level 3a is compile time detection only, while level 3b
represents both compile and runtime detection.

Level of Concurrency

0 1 2 3a 3b

Dynamic Number 435 435 390 390
of Instructions

Machine CyclesMahn yls 435 306 180 121 93
to Execute Task

Speedup 1.00 1.42 2.42 3.22 4.19

Figure 3-3: Ratios for Different Levels of Concurrency

1"Performance Evaluation of the Execution Aspects of Computer Architectures", by M. Flynn,
J. Huck, S. Wakefield and R. Wedig, International Workshop on High-Level Language Computer
Architecture, Ft. Lauderdale, FL, December 1982.

7

4 Participating Scientific Personnel

Professor Michael J. Flynn
Principal Investigator
Department of Electrical Engineering
Stanford University

Donald Alpert (Received Ph.D. degree in Electrical Engineering, June 1984)
Research Assistant
Stanford University

Jerome Huck (Received Ph.D. degree in Electrical Engineering, March 1983)
Research Assistant
Stanford University

Chad Mitchell (Ph.D. degree in Computer Science expected November 1985)
Research Assistant
Stanford University

Johannes Mulder (Ph.D. candidate, Electrical Engineering)
Research Assistant
Stanford University

Evan Tick (Ph.D. candidate, Electrical Engineering)
Research Assistant
Stanford University

Scott Wakefield (Received Ph.D. degree in Electrical Engineering, December 1982)
Research Assistant
Stanford University

Robert Wedig (Received Ph.D. degree in Electrical Engineering, June 1982)
Research Assistant
Stanford University

Andrew Zimmerman (Ph.D. candidate, Electrical Engineering)
Research Assistant
Stanford University

8

% , L ° L' ,Q. ,' ,' ,',,% ' . ' ,',' ,' , o . -. , -. , - - . ,,. . ,* * ,, . -o- -" -",

5 Technical Reports and Publications Sponsored Under Contract

DEL Formats for Recursive Languages
by J. D. Johnson
CSL Technical Note 202, May 1982

"Detection of Concurrency in Directly Executed Language Instruction Streams"
by Robert G. Wedig, Ph.D. Thesis, Stanford University, June 1982.
(Also available as CSL Technical Report No. 238, January 1983)

"Concurrency Detection in Language-Oriented Processing Systems"
by M. Flynn and R. Wedig
Proceedings of the 3rd International Conference on Distributed Computing Systems
Miami/Ft. Lauderdale, FL, October 1982

"Performance Evaluation of the Execution Aspects of Computer Architectures"
by M. Flynn, J. Huck, S. Wakefield, and R. Wedig
Proceedings of the International Workshop on High Level Language Computer Architecture,
December 1982, Ft. Lauderdale, FL.

"Studies in Execution Architectures"
by Scott Wakefield, Ph.D. thesis, Stanford University, December 1982.
(also available as CSL Technical Report No. 237, January 1983)

"A Local Variable Storage Mechanism"
by Scott Wakefield
COMPCON Proceedings March 1983, San Francisco, CA.

"Execution Architecture: The DELtran Experiment"
by M. Flynn and L. Hoevel
IEEE Transactions on Computers, C-32(2):156-175, February 1983.

"Comparative Analysis of Computer Architectures" p
by Jerome Huck, Ph.D. thesis, Stanford University, March 1982.
(also available as CSL Technical Report 83-243, May 1983)

"Comparative Analysis of Computer Architectures"
by J. Huck and M. Flynn
Proceedings of the 9th World Computer Congress, IFIP
Paris, September 1983.

"Stanford Emulation Laboratory"
by M. Flynn
SlGmicro Newsletter, 14(3):10-17, September, 1983

9

4 t •

"Directly Executed Language Architectures for VLSI Processor Design"
by D. Alpert, M. Flynn, and S. Wakefield
Proceedings, International Conference on Computer Design, pp. 609-612
October, 1983.

Data Buffers for Execution Architectures
by D. Alpert
CSL Technical Report 83-250, November 1983

"Towards Better Instruction Sets"

by M. Flynn
SIGmicro Newsletter, 14(4):3-8, December, 1983

2Evaluation of an Interpreted Architecture for Pascal on a Personal Computer
! . by C. Mitchell

CSL Technical Report 83-253, December 1983

Performance Tradeoffs for Microprocessor Cache Memories
by D. Alpert

CSL Technical Note 83-239, December 1983

Memory Hierarchies for Directly Executed Language Microprocessors
by D. Alpert, Ph.D. thesis, Stanford University, June 1984
(also available as CSL Technical Report 84-260, June 1984)

"Measures of Ideal Execution Architectures"
by M. Flynn and L. Hoevel
IBM Journal of Research and Development 28(4):356-369, July 1984

2 Instruction Bandwidth of Direct Correspondence Architectures

by C. Mitchell
CSL Technical Report 84-267, December 1984

"On Instruction Sets and Their Formats"
by M. Flynn, J. Johnson, and S. Wakefield
IEEE Transactions on Computers, C-34(3):242-254, February 1985

"Adept-A Pascal Based Architecture"
by S. Wakefield and M. Flynn
(revised version submitted to ACM Transactions on Computer Systems, January 1985.)

2These reports were produced under an IBM Fellowship, based on work continuing from ARO sponsored

projects.

10

;27

7
3

FILMED

9- 85

DTlC

